1
Vermerris W. Genetic improvement of bioenergy crops. New York: Springer 2008.
2
Robert C. Brown. Thermochemical processing of biomass (ebook). Hoboken, NJ: John Wiley & Sons 2011.
3
Brown RC. Thermochemical processing of biomass. Oxford: Wiley-Blackwell 2011.
4
Gordon G. Allison. Application of Fourier Transform Mid-Infrared Spectroscopy (FTIR) for Research into Biomass Feed-Stocks. In: Nikolic G, ed. Fourier Transforms - New Analytical Approaches and FTIR Strategies. InTech 2011.
5
A. Karp NGH. Energy crops. Cambridge: Royal Society of Chemistry 2011.
6
Wiley: Chemometrics, 2nd Edition - Matthias Otto.
7
Robbins MP, Evans G, Valentine J, et al. New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Progress in Energy and Combustion Science. 2012;38:138–55. doi: 10.1016/j.pecs.2011.08.001
8
Börjesson P. Environmental effects of energy crop cultivation in Sweden—I: Identification and quantification. Biomass and Bioenergy. 1999;16:137–54. doi: 10.1016/S0961-9534(98)00080-4
9
Agar D, Wihersaari M. Torrefaction technology for solid fuel production. GCB Bioenergy. 2012;4:475–8. doi: 10.1111/j.1757-1707.2011.01141.x
10
Van Loo S, Koppejan J, International Institute for Environment and Development. The handbook of biomass combustion and co-firing. London: Earthscan 2010.
11
Deutsche Gesellschaft für Sonnenenergie, ECOFYS (Firm). Planning and installing bioenergy systems: a guide for installers, architects, and engineers. Sterling, VA: Earthscan 2005.
12
Bridgwater, A. V. The technical and economic feasibility of biomass gasification for power generation. Fuel. 1995;74.
13
Samson, R., Mani, S., Boddey, R., et al. The potential of C4 perennial grasses for developing a global BIOHEAT industry. Critical Reviews in Plant Sciences. 2005;24.
14
The economics of climate change: The Stern review. Cambridge, UK: Cambridge University Press 2007.
15
Radetzki, M. The economics of biomass in industrialized countries: An overview. Energy Policy. 1997;25.
16
Berndes, G., Hoogwijk, M., van den Broek, R. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass and Bioenergy. 2003;25.
17
Kleiner, K. The bright prospect of biochar. 2009;Volume|.
18
Glithero NJ, Wilson P, Ramsden SJ. Straw use and availability for second generation biofuels in England. Biomass and Bioenergy. 2013;55:311–21. doi: 10.1016/j.biombioe.2013.02.033
19
Glithero NJ, Wilson P, Ramsden SJ. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England. Applied Energy. 2013;107:209–18. doi: 10.1016/j.apenergy.2013.02.032
20
Atkinson CJ. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass and Bioenergy. 2009;33:752–9. doi: 10.1016/j.biombioe.2009.01.005
21
Duffy, M. D., Nanhou, V. Y. Costs of producing switchgrass for biomass in Southern Iowa. Trends in New Crops and New Uses. ASHS Press 1996.
22
Nass, L.L., Pereira, P.A.A., Ellis, D. Biofuels in Brazil: An overview. Crop Science. 2007;47.
23
Heaton, E. A., Long, S. P., Voigt, T. B., et al. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitigation and Adaptation Strategies for Global Change. 2004;9.
24
Coombs, J., Hall, K. Chemicals and polymers from biomass. Renewable Energy. 1998;15.
25
Prochnow, A., Heiermann, M., Plöchl, M., et al. Bioenergy from permanent grassland - A review: 1. Biogas. Bioresource Technology. 2009;100.
26
Robertson GP, Dale VH, Doering OC, et al. AGRICULTURE: Sustainable Biofuels Redux. Science. 2008;322:49–50. doi: 10.1126/science.1161525
27
Mascia PN, Scheffran J, Widholm JM, editors. Plant biotechnology for sustainable production of energy and co-products. Heidelberg: Springer 2010.
28
Venturi, P., Venturi, G. Analysis of energy comparison for crops in European agricultural systems. Biomass and Bioenergy. 2003;25.
29
Yuan, J. S., Tiller, K. H., Al-Ahmad, H., et al. Plants to power: Bioenergy to fuel the future. Trends in Plant Science. 2008;13.
30
Bridgwater, A. V., Cottam, M. -L. Opportunities for biomass pyrolysis liquids production and upgrading. Energy and Fuels. 1991;6.
31
Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O., et al. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy. 2000;19.
32
Demirbas, A. H., Demirbas, I. Importance of rural bioenergy for developing countries. Energy Conversion and Management. 2007;48.
33
Pogson M, Hastings A, Smith P. How does bioenergy compare with other land-based renewable energy sources globally? GCB Bioenergy. 2013;5:513–24. doi: 10.1111/gcbb.12013
34
Chang, M. C. Y. Harnessing energy from plant biomass. Current Opinion in Chemical Biology. 2007;11.
35
Sherrington, C., Bartley, J., Moran, D. Farm-level constraints on the domestic supply of perennial energy crops in the UK. Energy Policy. 2008;36.
36
Goldemberg, J., Coelho, S. T., Nastari, P. M., et al. Ethanol learning curve - the Brazilian experience. Biomass and Bioenergy. 2004;26.
37
Atkinson CJ. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass and Bioenergy. 2009;33:752–9. doi: 10.1016/j.biombioe.2009.01.005
38
Rösch, C., Skarka, J., Raab, K., et al. Energy production from grassland - Assessing the sustainability of different process chains under German conditions. Biomass and Bioenergy. 2009;33.
39
McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresource Technology. 2002;83.
40
Venturi, P., Gigler, J. K., Huisman, W. Economical and technical comparison between herbaceous (Miscanthus x giganteus) and woody energy crops (Salix viminalis). Renewable Energy. 1999;16.
41
Nass, L.L., Pereira, P.A.A., Ellis, D. Biofuels in Brazil: An overview. Crop Science. 2007;47.
42
Stewart, C.N. Biofuels and biocontainment. Nature Biotechnology. 2007;25.
43
Prochnow, A., Heiermann, M., Plöchl, M., et al. Bioenergy from permanent grassland - A review: 2. Combustion. Bioresource Technology. 2009;100.
44
Hatti-Kaul, R., Tornvall, U., Gustafsson, L., et al. Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective. Trends in Biotechnology. 2007;25.
45
Valentine J, Clifton-Brown J, Hastings A, et al. Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy. 2012;4:1–19. doi: 10.1111/j.1757-1707.2011.01111.x
46
Tilman D, Socolow R, Foley JA, et al. Beneficial Biofuels--The Food, Energy, and Environment Trilemma. Science. 2009;325:270–1. doi: 10.1126/science.1177970
47
Nonhebel, S. Renewable energy and food supply: Will there be enough land? Renewable and Sustainable Energy Reviews. 2005;9.