1.
Vermerris, W. Genetic improvement of bioenergy crops. (Springer, 2008).
2.
Robert C. Brown. Thermochemical processing of biomass (ebook). (John Wiley & Sons, 2011).
3.
Brown, R. C. Thermochemical processing of biomass. vol. Wiley series in renewable resources (Wiley-Blackwell, 2011).
4.
Gordon G. Allison. Application of Fourier Transform Mid-Infrared Spectroscopy (FTIR) for Research into Biomass Feed-Stocks. in Fourier Transforms - New Analytical Approaches and FTIR Strategies (ed. Nikolic, G.) (InTech, 2011). doi:10.5772/15785.
5.
A. Karp, N. G. H. Energy crops. (Royal Society of Chemistry, 2011).
6.
Wiley: Chemometrics, 2nd Edition - Matthias Otto.
7.
Robbins, M. P., Evans, G., Valentine, J., Donnison, I. S. & Allison, G. G. New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Progress in Energy and Combustion Science 38, 138–155 (2012).
8.
Börjesson, P. Environmental effects of energy crop cultivation in Sweden—I: Identification and quantification. Biomass and Bioenergy 16, 137–154 (1999).
9.
Agar, D. & Wihersaari, M. Torrefaction technology for solid fuel production. GCB Bioenergy 4, 475–478 (2012).
10.
Van Loo, S., Koppejan, J., & International Institute for Environment and Development. The handbook of biomass combustion and co-firing. (Earthscan, 2010).
11.
Deutsche Gesellschaft für Sonnenenergie & ECOFYS (Firm). Planning and installing bioenergy systems: a guide for installers, architects, and engineers. (Earthscan, 2005).
12.
Bridgwater, A. V. The technical and economic feasibility of biomass gasification for power generation. Fuel 74, (1995).
13.
Samson, R. et al. The potential of C4 perennial grasses for developing a global BIOHEAT industry. Critical Reviews in Plant Sciences 24, (2005).
14.
The economics of climate change: The Stern review. (Cambridge University Press, 2007).
15.
Radetzki, M. The economics of biomass in industrialized countries: An overview. Energy Policy 25, (1997).
16.
Berndes, G., Hoogwijk, M., & van den Broek, R. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass and Bioenergy 25, (2003).
17.
Kleiner, K. The bright prospect of biochar. vol. Volume| (2009).
18.
Glithero, N. J., Wilson, P. & Ramsden, S. J. Straw use and availability for second generation biofuels in England. Biomass and Bioenergy 55, 311–321 (2013).
19.
Glithero, N. J., Wilson, P. & Ramsden, S. J. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England. Applied Energy 107, 209–218 (2013).
20.
Atkinson, C. J. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass and Bioenergy 33, 752–759 (2009).
21.
Duffy, M. D. & Nanhou, V. Y. Costs of producing switchgrass for biomass in Southern Iowa. in Trends in New Crops and New Uses (ASHS Press, 1996).
22.
Nass, L.L., Pereira, P.A.A., & Ellis, D. Biofuels in Brazil: An overview. Crop Science 47, (2007).
23.
Heaton, E. A., Long, S. P., Voigt, T. B., Jones, M. B., & Clifton-Brown, J. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitigation and Adaptation Strategies for Global Change 9, (2004).
24.
Coombs, J. & Hall, K. Chemicals and polymers from biomass. Renewable Energy 15, (1998).
25.
Prochnow, A. et al. Bioenergy from permanent grassland - A review: 1. Biogas. Bioresource Technology 100, (2009).
26.
Robertson, G. P. et al. AGRICULTURE: Sustainable Biofuels Redux. Science 322, 49–50 (2008).
27.
Plant biotechnology for sustainable production of energy and co-products. vol. Biotechnology in agriculture and forestry (Springer, 2010).
28.
Venturi, P. & Venturi, G. Analysis of energy comparison for crops in European agricultural systems. Biomass and Bioenergy 25, (2003).
29.
Yuan, J. S., Tiller, K. H., Al-Ahmad, H., Stewart, N. R., & Stewart Jr, C. N. Plants to power: Bioenergy to fuel the future. Trends in Plant Science 13, (2008).
30.
Bridgwater, A. V. & Cottam, M. -L. Opportunities for biomass pyrolysis liquids production and upgrading. Energy and Fuels 6, (1991).
31.
Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O., & Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy 19, (2000).
32.
Demirbas, A. H. & Demirbas, I. Importance of rural bioenergy for developing countries. Energy Conversion and Management 48, (2007).
33.
Pogson, M., Hastings, A. & Smith, P. How does bioenergy compare with other land-based renewable energy sources globally? GCB Bioenergy 5, 513–524 (2013).
34.
Chang, M. C. Y. Harnessing energy from plant biomass. Current Opinion in Chemical Biology 11, (2007).
35.
Sherrington, C., Bartley, J., & Moran, D. Farm-level constraints on the domestic supply of perennial energy crops in the UK. Energy Policy 36, (2008).
36.
Goldemberg, J., Coelho, S. T., Nastari, P. M., & Lucon, O. Ethanol learning curve - the Brazilian experience. Biomass and Bioenergy 26, (2004).
37.
Atkinson, C. J. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass and Bioenergy 33, 752–759 (2009).
38.
Rösch, C., Skarka, J., Raab, K., & Stelzer, V. Energy production from grassland - Assessing the sustainability of different process chains under German conditions. Biomass and Bioenergy 33, (2009).
39.
McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresource Technology 83, (2002).
40.
Venturi, P., Gigler, J. K., & Huisman, W. Economical and technical comparison between herbaceous (Miscanthus x giganteus) and woody energy crops (Salix viminalis). Renewable Energy 16, (1999).
41.
Nass, L.L., Pereira, P.A.A., & Ellis, D. Biofuels in Brazil: An overview. Crop Science 47, (2007).
42.
Stewart, C.N. Biofuels and biocontainment. Nature Biotechnology 25, (2007).
43.
Prochnow, A., Heiermann, M., Plöchl, M., Amon, T., & Hobbs, P. J. Bioenergy from permanent grassland - A review: 2. Combustion. Bioresource Technology 100, (2009).
44.
Hatti-Kaul, R., Tornvall, U., Gustafsson, L., & Borjesson, P. Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective. Trends in Biotechnology 25, (2007).
45.
Valentine, J. et al. Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 4, 1–19 (2012).
46.
Tilman, D. et al. Beneficial Biofuels--The Food, Energy, and Environment Trilemma. Science 325, 270–271 (2009).
47.
Nonhebel, S. Renewable energy and food supply: Will there be enough land? Renewable and Sustainable Energy Reviews 9, (2005).