[1]
A. Karp, N.G.H. 2011. Energy crops. Royal Society of Chemistry.
[2]
Agar, D. and Wihersaari, M. 2012. Torrefaction technology for solid fuel production. GCB Bioenergy. 4, 5 (Sep. 2012), 475–478. DOI:https://doi.org/10.1111/j.1757-1707.2011.01141.x.
[3]
Atkinson, C.J. 2009. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass and Bioenergy. 33, 5 (May 2009), 752–759. DOI:https://doi.org/10.1016/j.biombioe.2009.01.005.
[4]
Atkinson, C.J. 2009. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass and Bioenergy. 33, 5 (May 2009), 752–759. DOI:https://doi.org/10.1016/j.biombioe.2009.01.005.
[5]
Berndes, G. et al. 2003. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass and Bioenergy. 25, 1 (2003).
[6]
Börjesson, P. 1999. Environmental effects of energy crop cultivation in Sweden—I: Identification and quantification. Biomass and Bioenergy. 16, 2 (Feb. 1999), 137–154. DOI:https://doi.org/10.1016/S0961-9534(98)00080-4.
[7]
Bridgwater, A. V. 1995. The technical and economic feasibility of biomass gasification for power generation. Fuel. 74, 5 (1995).
[8]
Bridgwater, A. V. and Cottam, M. -L. 1991. Opportunities for biomass pyrolysis liquids production and upgrading. Energy and Fuels. 6, (1991).
[9]
Brown, R.C. 2011. Thermochemical processing of biomass. Wiley-Blackwell.
[10]
Chang, M. C. Y. 2007. Harnessing energy from plant biomass. Current Opinion in Chemical Biology. 11, 6 (2007).
[11]
Coombs, J. and Hall, K. 1998. Chemicals and polymers from biomass. Renewable Energy. 15, 1–4 (1998).
[12]
Demirbas, A. H. and Demirbas, I. 2007. Importance of rural bioenergy for developing countries. Energy Conversion and Management. 48, (2007).
[13]
Deutsche Gesellschaft für Sonnenenergie and ECOFYS (Firm) 2005. Planning and installing bioenergy systems: a guide for installers, architects, and engineers. Earthscan.
[14]
Duffy, M. D. and Nanhou, V. Y. 1996. Costs of producing switchgrass for biomass in Southern Iowa. Trends in New Crops and New Uses. ASHS Press.
[15]
Glithero, N.J. et al. 2013. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England. Applied Energy. 107, (Jul. 2013), 209–218. DOI:https://doi.org/10.1016/j.apenergy.2013.02.032.
[16]
Glithero, N.J. et al. 2013. Straw use and availability for second generation biofuels in England. Biomass and Bioenergy. 55, (Aug. 2013), 311–321. DOI:https://doi.org/10.1016/j.biombioe.2013.02.033.
[17]
Goldemberg, J. et al. 2004. Ethanol learning curve - the Brazilian experience. Biomass and Bioenergy. 26, 3 (2004).
[18]
Gordon G. Allison 2011. Application of Fourier Transform Mid-Infrared Spectroscopy (FTIR) for Research into Biomass Feed-Stocks. Fourier Transforms - New Analytical Approaches and FTIR Strategies. G. Nikolic, ed. InTech.
[19]
Hatti-Kaul, R. et al. 2007. Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective. Trends in Biotechnology. 25, 3 (2007).
[20]
Heaton, E. A. et al. 2004. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitigation and Adaptation Strategies for Global Change. 9, 4 (2004).
[21]
Kleiner, K. 2009. The bright prospect of biochar. Nature Publishing Group.
[22]
Lewandowski, I. et al. 2000. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy. 19, 4 (2000).
[23]
Mascia, P.N. et al. eds. 2010. Plant biotechnology for sustainable production of energy and co-products. Springer.
[24]
McKendry, P. 2002. Energy production from biomass (part 1): Overview of biomass. Bioresource Technology. 83, 1 (2002).
[25]
Nass, L.L. et al. 2007. Biofuels in Brazil: An overview. Crop Science. 47, 6 (2007).
[26]
Nass, L.L. et al. 2007. Biofuels in Brazil: An overview. Crop Science. 47, 6 (2007).
[27]
Nonhebel, S. 2005. Renewable energy and food supply: Will there be enough land? Renewable and Sustainable Energy Reviews. 9, 2 (2005).
[28]
Pogson, M. et al. 2013. How does bioenergy compare with other land-based renewable energy sources globally? GCB Bioenergy. 5, 5 (Sep. 2013), 513–524. DOI:https://doi.org/10.1111/gcbb.12013.
[29]
Prochnow, A. et al. 2009. Bioenergy from permanent grassland - A review: 1. Biogas. Bioresource Technology. 100, (2009).
[30]
Prochnow, A. et al. 2009. Bioenergy from permanent grassland - A review: 2. Combustion. Bioresource Technology. 100, (2009).
[31]
Radetzki, M. 1997. The economics of biomass in industrialized countries: An overview. Energy Policy. 25, 6 (1997).
[32]
Robbins, M.P. et al. 2012. New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Progress in Energy and Combustion Science. 38, 2 (Apr. 2012), 138–155. DOI:https://doi.org/10.1016/j.pecs.2011.08.001.
[33]
Robert C. Brown 2011. Thermochemical processing of biomass (ebook). John Wiley & Sons.
[34]
Robertson, G.P. et al. 2008. AGRICULTURE: Sustainable Biofuels Redux. Science. 322, 5898 (Oct. 2008), 49–50. DOI:https://doi.org/10.1126/science.1161525.
[35]
Rösch, C. et al. 2009. Energy production from grassland - Assessing the sustainability of different process chains under German conditions. Biomass and Bioenergy. 33, (2009).
[36]
Samson, R. et al. 2005. The potential of C4 perennial grasses for developing a global BIOHEAT industry. Critical Reviews in Plant Sciences. 24, 5 (2005).
[37]
Sherrington, C. et al. 2008. Farm-level constraints on the domestic supply of perennial energy crops in the UK. Energy Policy. 36, 7 (2008).
[38]
Stewart, C.N. 2007. Biofuels and biocontainment. Nature Biotechnology. 25, (2007).
[39]
Tilman, D. et al. 2009. Beneficial Biofuels--The Food, Energy, and Environment Trilemma. Science. 325, 5938 (Jul. 2009), 270–271. DOI:https://doi.org/10.1126/science.1177970.
[40]
Valentine, J. et al. 2012. Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy. 4, 1 (Jan. 2012), 1–19. DOI:https://doi.org/10.1111/j.1757-1707.2011.01111.x.
[41]
Van Loo, S. et al. 2010. The handbook of biomass combustion and co-firing. Earthscan.
[42]
Venturi, P. et al. 1999. Economical and technical comparison between herbaceous (Miscanthus x giganteus) and woody energy crops (Salix viminalis). Renewable Energy. 16, 1–4 (1999).
[43]
Venturi, P. and Venturi, G. 2003. Analysis of energy comparison for crops in European agricultural systems. Biomass and Bioenergy. 25, 3 (2003).
[44]
Vermerris, W. 2008. Genetic improvement of bioenergy crops. Springer.
[45]
Yuan, J. S. et al. 2008. Plants to power: Bioenergy to fuel the future. Trends in Plant Science. 13, 8 (2008).
[46]
2007. The economics of climate change: The Stern review. Cambridge University Press.
[47]
Wiley: Chemometrics, 2nd Edition - Matthias Otto.